



| 1  | Heterogeneous Formation of Particulate Nitrate under Ammonium-                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------|
| 2  | rich Regime during the high PM <sub>2.5</sub> events in Nanjing, China                                                      |
| 3  | Yu-Chi Lin <sup>1,2,3</sup> , Yan-Lin Zhang <sup>1,2,3*</sup> , Mei-Yi Fan <sup>1,2,3</sup> , Mengying Bao <sup>1,2,3</sup> |
| 4  | <sup>1.</sup> Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on                               |
| 5  | Climate and Environment Change, Nanjing University of Information Science and                                               |
| 6  | Technology, Nanjing, 210044, China.                                                                                         |
| 7  | <sup>2</sup> Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative                                  |
| 8  | Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing                                            |
| 9  | University of Information Science and Technology, Nanjing, 210044, China.                                                   |
| 10 | <sup>3</sup> . Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied                            |
| 11 | Meteorology, Nanjing University of Information Science & Technology, Nanjing                                                |
| 12 | 210044, China.                                                                                                              |
| 13 |                                                                                                                             |
| 14 | Corresponded to Yan-Lin Zhang (dryanlinzhang@outlook.com;                                                                   |
| 15 | zhangyanlin@nuist.edu.cn)                                                                                                   |
| 16 |                                                                                                                             |
| 17 | ABSTRACT                                                                                                                    |
| 18 | Particulate nitrate (NO3 <sup>-</sup> ) not only influences regional climates but also contributes to                       |
| 19 | the acidification of terrestrial and aquatic ecosystems. In 2016 and 2017, four                                             |
| 20 | intensive on-line measurements of water-soluble ions in PM2.5 were conducted in                                             |
| 21 | Nanjing City to investigate the potential formation mechanisms of particulate nitrate.                                      |
| 22 | During the sampling periods, NO3 <sup>-</sup> was the most predominant species, accounting for                              |
| 23 | 35 % of the total water-soluble inorganic ions, followed by $\mathrm{SO_4^{2-}}$ (33 %) and $\mathrm{NH_4^+}$               |
| 24 | (24 %). Significant enhancements of nitrate aerosols in terms of both absolute                                              |
| 25 | concentrations and relative abundances suggested that NO3 <sup>-</sup> was a major contributing                             |





| 26 | species to high-PM <sub>2.5</sub> events (hourly PM <sub>2.5</sub> $\geq 150 \ \mu g \ m^{-3}$ ). High NO <sub>3</sub> - |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 27 | concentrations mainly occurred under NH4 <sup>+</sup> -rich conditions, implying that the                                |
| 28 | formation of nitrate aerosols in Nanjing involved NH <sub>3</sub> . During the high-PM <sub>2.5</sub> events,            |
| 29 | the nitrogen conversion ratios (Fn) were positively correlated with the aerosol liquid                                   |
| 30 | water content (ALWC, R = 0.75, $p < .05$ ). Meanwhile, increasing NO <sub>3</sub> <sup>-</sup> concentrations            |
| 31 | regularly coincided with increasing ALWC and decreasing $Ox (Ox = O_3 + NO_2)$ .                                         |
| 32 | These results suggested that the heterogeneous reaction was probably a major                                             |
| 33 | mechanism of nitrate formation. Moreover, the average production rate of $NO_3^-$ by                                     |
| 34 | heterogeneous processes was estimated to be 12.6 % $h^{-1}$ , which was much higher than                                 |
| 35 | that (2.5 $\%$ h <sup>-1</sup> ) of gas-phase reactions. This can also explain the abrupt increase of                    |
| 36 | nitrate concentrations during the high PM <sub>2.5</sub> events. Finally, ammonium nitrate aerosol                       |
| 37 | formation was HNO3-limited, indicating that the control of NOx emissions will be                                         |
| 38 | able to efficiently reduce airborne nitrate concentrations and improve the air quality in                                |
| 39 | this industrial city.                                                                                                    |
| 40 | Keywords: Nitrate aerosols, nitrogen conversion ratios, NH4 <sup>+</sup> -rich regime, Hydrolysis                        |
| 41 | of N <sub>2</sub> O <sub>5</sub> , Nitrate production rate                                                               |
| 42 |                                                                                                                          |
| 43 | 1. Introduction                                                                                                          |
| 44 | Due to the rapid growth of industrialization and urbanization, particulate matter                                        |
| 45 | (PM) pollution has become a series problem in China in recent years (Chan and Yao,                                       |
| 46 | 2008; Zhang and Cao, 2015). Fine mode particles ( $PM_{2.5}$ , with aerodynamic diameters                                |
| 47 | less than 2.5 $\mu m)$ exhibit smaller sizes and contain many toxins emitted from                                        |
| 48 | anthropogenic emissions. $PM_{2.5}$ easily penetrates the upper respiratory tract and is                                 |
|    |                                                                                                                          |

- 49 deposited into the human body, causing serious threats to human health. Numerous
- $50 \qquad \text{previous studies have proven that people exposed to high $PM_{2.5}$ concentrations show}$
- 51 increased risks of respiratory illness, cardiovascular diseases and asthma (Brauer et





| 52                                                 | al., 2002; Defino et al., 2005), resulting in an increase of mortality (Nel, 2005).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53                                                 | Secondary inorganic aerosols (SIA), including sulfate (SO4 <sup>2-</sup> ), nitrate (NO3 <sup>-</sup> ) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 54                                                 | ammonium (NH <sub>4</sub> <sup>+</sup> ), are major constituents of $PM_{2.5}$ , accounting for 25 - 58 % of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55                                                 | PM <sub>2.5</sub> mass in urban cities of China (Huang et al., 2014a; Wang et al., 2018; Yang et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56                                                 | al., 2005; Ye et al., 2017; Zhao et al., 2013; Zhou et al., 2018). Among these species,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 57                                                 | $SO_4^{2-}$ and $NO_3^{-}$ are acidic ions which tend to be neutralized by $NH_4^+$ . Previously,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 58                                                 | many studies suggested that SO42- dominated SIA in urban cities of China (Kong et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 59                                                 | al., 2014; Tao et al., 2016; Yang et al., 2005; Yao et al., 2002; Zhao et al., 2013). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60                                                 | recent years, the Chinese government reduced its anthropogenic emissions by 62 $\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 61                                                 | and 17 % for $SO_2$ and NOx (Zheng et al., 2018). This revealed that the reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 62                                                 | efficiency of SO <sub>2</sub> emissions were much higher than those of NOx. Consequently,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 63                                                 | nitrate has become the dominant species of SIA, especially during PM haze events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 64                                                 | (Wang et al., 2018; Wen et al., 2015; Zou et al., 2018).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 65                                                 | In the atmosphere, ammonium nitrate (NH4NO3) is a major form of nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 05                                                 | In the atmosphere, animolium intrate (11141003) is a major form of intrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 66                                                 | aerosols in fine mode particles. NH4NO3 is a semi-volatile species which partitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 66                                                 | aerosols in fine mode particles. NH4NO3 is a semi-volatile species which partitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 66<br>67                                           | aerosols in fine mode particles. NH <sub>4</sub> NO <sub>3</sub> is a semi-volatile species which partitions from the particle phase into the gas phase under high-temperature (T) conditions. It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 66<br>67<br>68                                     | aerosols in fine mode particles. NH <sub>4</sub> NO <sub>3</sub> is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 66<br>67<br>68<br>69                               | aerosols in fine mode particles. NH <sub>4</sub> NO <sub>3</sub> is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence<br>relative humidity (DRH, nearly 62 % RH at atmospheric standard condition). To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 66<br>67<br>68<br>69<br>70                         | aerosols in fine mode particles. $NH_4NO_3$ is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence<br>relative humidity (DRH, nearly 62 % RH at atmospheric standard condition). To<br>produce $NH_4NO_3$ , nitrogen oxides ( $NO_x$ ) and ammonia ( $NH_3$ ) undergo a series of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 66<br>67<br>68<br>69<br>70<br>71                   | aerosols in fine mode particles. $NH_4NO_3$ is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence<br>relative humidity (DRH, nearly 62 % RH at atmospheric standard condition). To<br>produce $NH_4NO_3$ , nitrogen oxides ( $NO_x$ ) and ammonia ( $NH_3$ ) undergo a series of<br>chemical reactions. $NO_x$ mostly emits as fresh NO, which is subsequently oxidized to                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 66<br>67<br>68<br>69<br>70<br>71<br>72             | aerosols in fine mode particles. $NH_4NO_3$ is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence<br>relative humidity (DRH, nearly 62 % RH at atmospheric standard condition). To<br>produce $NH_4NO_3$ , nitrogen oxides ( $NO_x$ ) and ammonia ( $NH_3$ ) undergo a series of<br>chemical reactions. $NO_x$ mostly emits as fresh NO, which is subsequently oxidized to<br>$NO_2$ and reacts with hydrogen oxide (OH) radicals to generate nitric acid (HNO <sub>3</sub> ), and                                                                                                                                                                                                                                                                                                                                    |
| 66<br>67<br>68<br>69<br>70<br>71<br>72<br>73       | aerosols in fine mode particles. $NH_4NO_3$ is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence<br>relative humidity (DRH, nearly 62 % RH at atmospheric standard condition). To<br>produce $NH_4NO_3$ , nitrogen oxides ( $NO_x$ ) and ammonia ( $NH_3$ ) undergo a series of<br>chemical reactions. $NO_x$ mostly emits as fresh NO, which is subsequently oxidized to<br>$NO_2$ and reacts with hydrogen oxide (OH) radicals to generate nitric acid (HNO <sub>3</sub> ), and<br>then HNO <sub>3</sub> reacts with NH <sub>3</sub> to yield $NH_4NO_3$ particles as listed in R1 and R2 (Calvert                                                                                                                                                                                                                 |
| 66<br>67<br>68<br>69<br>70<br>71<br>72<br>73<br>73 | aerosols in fine mode particles. NH <sub>4</sub> NO <sub>3</sub> is a semi-volatile species which partitions<br>from the particle phase into the gas phase under high-temperature (T) conditions. It<br>deliquesces when the ambient relative humidity (RH) is higher than its deliquescence<br>relative humidity (DRH, nearly 62 % RH at atmospheric standard condition). To<br>produce NH <sub>4</sub> NO <sub>3</sub> , nitrogen oxides (NO <sub>x</sub> ) and ammonia (NH <sub>3</sub> ) undergo a series of<br>chemical reactions. NO <sub>x</sub> mostly emits as fresh NO, which is subsequently oxidized to<br>NO <sub>2</sub> and reacts with hydrogen oxide (OH) radicals to generate nitric acid (HNO <sub>3</sub> ), and<br>then HNO <sub>3</sub> reacts with NH <sub>3</sub> to yield NH <sub>4</sub> NO <sub>3</sub> particles as listed in R1 and R2 (Calvert<br>and Stockwell, 1983). Particulate NH <sub>4</sub> NO <sub>3</sub> formation rate is profoundly dependent on |





| 78  | $NO_{2(g)} + OH_{(g)} \rightarrow HNO_{3(g)}$ k1 (R1)                                                         |
|-----|---------------------------------------------------------------------------------------------------------------|
| 79  | $HNO_{3(g)} + NH_{3(g)} \rightarrow NH_4NO_{3(s, aq)} \qquad k2 \qquad (R2)$                                  |
| 80  | $k_2 = [HNO_{3(g)}] [NH_{3(g)}]$ (1)                                                                          |
| 81  | Here, $k_1$ and $k_2$ are the reaction rate and equilibrium constant of R1 and R2,                            |
| 82  | respectively. The equilibrium constant $k_2$ can be expressed as the product of HNO <sub>3</sub>              |
| 83  | and NH <sub>3</sub> .                                                                                         |
| 84  | Heterogeneous reactions have been considered an important mechanism of nitrate                                |
| 85  | formation during the nighttime. As listed in R3, liquid HNO <sub>3</sub> is produced by the                   |
| 86  | hydrolysis of dinitrogen pentoxide (N2O5) on aerosol surfaces (Brown & Stutz, 2012;                           |
| 87  | Chang et al., 2011; Mental et al., 1999; Wahner et al., 1998). Liquid HNO3 can be                             |
| 88  | neutralized by $\mathrm{NH_4^+}$ , which is produced from the conversion of gaseous $\mathrm{NH_3}$ . Nitrate |
| 89  | aerosols yielded from both R2 and R3 require NH3, and we can therefore consider                               |
| 90  | these processes of $NO_3^-$ formation to occur under $NH_4$ -rich conditions. Sometimes,                      |
| 91  | there is not enough $NH_3$ to react with $HNO_3$ after complete neutralization by $H_2SO_4$ .                 |
| 92  | Under this condition, HNO3 tends to react with other alkaline species such as Ca-rich                         |
| 93  | dust (CaCO <sub>3</sub> ), and subsequently, nitrate aerosol is produced under a $\mathrm{NH_4^+}$ -poor      |
| 94  | regime (Goodman et al., 2000).                                                                                |
| 95  | $N_2O_{5(g)} + H_2O_{(l)} \rightarrow 2HNO_{3(aq)}$ (R3)                                                      |
| 96  |                                                                                                               |
| 97  | The Yangtze River Delta (YRD) region is one of the well-known polluted areas                                  |
| 98  | in China (Zhang and Cao, 2015). Different from the case of dramatic elevated sulfate                          |
| 99  | aerosol levels in Beijing (Wang et al., 2016), nitrate aerosols seemed to be a major                          |
| 100 | contributing species during haze days in the YRD region (Wang et al., 2015; Wang et                           |
| 101 | al., 2018). The formation mechanisms of nitrate in Nanjing have not yet been well                             |
| 102 | understood, especially during high PM events. In this study, four intensive online                            |
| 103 | measurements of water-soluble ions in $PM_{2.5}$ were conducted in Nanjing City in 2016                       |





| 104 | and 2017. The data provided information on the hourly evolution of water-soluble                                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 105 | inorganic ions (WSIIs) in the industrial city. The NO3 <sup>-</sup> distributions under different                                                                                                 |
| 106 | NH4 <sup>+</sup> regimes (NH4 <sup>+</sup> -poor and NH4 <sup>+</sup> -rich conditions) were also discussed. Finally, we                                                                          |
| 107 | investigated the potential formation mechanisms of nitrate aerosols and their                                                                                                                     |
| 108 | production rates during high-PM2.5 events based on the online measurements.                                                                                                                       |
| 109 |                                                                                                                                                                                                   |
| 110 | 2. Methodology                                                                                                                                                                                    |
| 111 | 2.1 Sampling site                                                                                                                                                                                 |
| 112 | Particulate WSIIs and gaseous pollutants were continuously monitored at Nanjing                                                                                                                   |
| 113 | University of Information Science and Technology (NUIST) located in the northern                                                                                                                  |
| 114 | part of Nanjing City (see Figure 1). In addition to the contributions from vehicle                                                                                                                |
| 115 | emissions, petroleum chemical refineries and steel manufacturing plants are situated                                                                                                              |
| 116 | in the northeast and east direction at a distance of approximately 5 km. Four intensive                                                                                                           |
| 117 | campaigns were conducted from March 2016 to August 2017. During each                                                                                                                              |
| 118 | experiment, the hourly concentrations of WSIIs in $PM_{2.5}$ and gaseous pollutants were                                                                                                          |
| 119 | continuously observed. Meanwhile, the hourly $PM_{2.5}$ , $NO_2$ and $O_3$ concentrations                                                                                                         |
| 120 | along with the ambient T and RH were acquired from the Pukou air quality                                                                                                                          |
| 121 | monitoring station which is located to the southwest of the receptor site.                                                                                                                        |
| 122 |                                                                                                                                                                                                   |
| 123 | 2.2 Instruments                                                                                                                                                                                   |
| 124 | To monitor the hourly concentrations of WSIIs (Cl <sup>-</sup> , NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> , Na <sup>+</sup> , NH <sub>4</sub> <sup>+</sup> , K <sup>+</sup> , |
| 125 | Mg <sup>2+</sup> and Ca <sup>2+</sup> ), an online Monitor for Aerosols and Gases (MAGAR, Applikon-ENC,                                                                                           |
| 126 | The Netherlands) instrument with a $PM_{2.5}$ inlet was employed. Using this instrument,                                                                                                          |
| 127 | the WSIIs in $PM_{2.5}$ were collected by a stream jet aerosol collector, while acidic (HCl,                                                                                                      |
| 128 | HONO, HNO3 and SO2) and basic gases (NH3) were dissolved in a hydrogen peroxide                                                                                                                   |

solution on a wet rotation denuder (ten Brink et al., 2007; Griffith, et al., 2015). The





- 130 liquid samples were then collected with syringe pumps and analyzed by ion
- 131 chromatography (IC). Before each campaign, a seven-point calibration curve of each
- 132 species was made, and an internal standard solution (LiBr) was used to check
- instrumental drifts. The method detection limits (MDLs) of Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Na<sup>+</sup>,
- 134  $NH_4^+$ ,  $K^+$ ,  $Mg^{2+}$  and  $Ca^{2+}$  were, 0.01, 0.04, 0.06, 0.05, 0.05, 0.07, 0.05 and 0.11  $\mu$ g m<sup>-</sup>
- 135 <sup>3</sup>, respectively. For gases, the MDLs were 0.07, 0.09, 0.06, 0.02 and 0.08  $\mu$ g/m<sup>3</sup> for
- 136 HCl, HONO, HNO<sub>3</sub>, SO<sub>2</sub> and NH<sub>3</sub>, respectively.
- 137

## 138 2.3 ISORROPIA-II model

- 139 In this work, we used the ISORROPIA-II model to calculate the aerosol liquid
- 140 water content (ALWC). ISORROPIA II is a thermodynamic equilibrium model which
- 141 was built based on the Na<sup>+</sup> Cl<sup>-</sup> Ca<sup>2+</sup> K<sup>+</sup> Mg<sup>2+</sup> SO<sub>4</sub><sup>2-</sup> NH<sub>4</sub><sup>+</sup> NO<sub>3</sub><sup>-</sup> H<sub>2</sub>O aerosol
- 142 system (Fountoukis & Nenes, 2007). This model has been successfully used to
- estimate the liquid water content in aerosols (Bian et al., 2014; Guo et al., 2015; Liu et
- 144 al., 2017). The input parameters of ISORROPIA-II included the concentrations of
- 145 WSIIs and their gaseous precursors (HNO<sub>3</sub>, HCl and NH<sub>3</sub>) as monitored by a
- 146 MARGA instrument, together with the ambient T and RH. Here, the model was
- 147 computed as a "forward problem", in which the quantities of aerosol- and gas-phase
- 148 compositions along with the T and RH were well known. Additionally, the modeled
- 149 values were determined using the "metastable" mode, which indicated that the aerosol
- 150 compositions were assumed to be composed of an aqueous solution (Liu et al., 2017).
- 151 The details of this model can be found elsewhere (Fountoukis and Nenes, 2007).
- 152

## 153 3. Results and discussion

- 154 3.1 Overview of water-soluble inorganic ions
- 155 Four intensive online measurements of WSIIs in PM<sub>2.5</sub> were carried out in





| 156 | Nanjing City from March 2016 to August 2017. Figure 2a plots the time series of the                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 157 | hourly $PM_{2.5}$ mass concentrations during the sampling periods. As seen, the hourly                                                                      |
| 158 | $PM_{2.5}mass$ concentrations varied from 5 to 252 $\mu g\ m^{\text{-}3}$ with a mean value of $58\pm35$                                                    |
| 159 | $\mu g$ m $^{\text{-3}}$ . Compared with the 24-hour guideline (25 $\mu g$ m $^{\text{-3}}$ ) suggested by the World                                        |
| 160 | Health Organization (WHO), our average $PM_{2.5}$ concentration (58 µg m <sup>-3</sup> ) was 2.3                                                            |
| 161 | times higher. This indicated that PM pollution in Nanjing City was a serious problem.                                                                       |
| 162 | During the campaigns, several high-PM <sub>2.5</sub> events with hourly PM <sub>2.5</sub> concentrations of                                                 |
| 163 | higher than 150 $\mu g~m^{\text{-}3}$ were observed in the springtime and wintertime. These high                                                            |
| 164 | PM <sub>2.5</sub> levels lasted for more than 3 hours, with obviously elevated NO <sub>3</sub> <sup>-</sup> . The details                                   |
| 165 | of nitrate formation during the high-PM2.5 hours will be discussed in the following                                                                         |
| 166 | sections.                                                                                                                                                   |
| 167 | Figure 2b shows the time series of the hourly concentrations of SIA species,                                                                                |
| 168 | including $SO_4^{2-}$ , $NO_3^{-}$ and $NH_4^{+}$ . The lack of data from March 7 to 14, 2016 was due                                                       |
| 169 | to a malfunction of the MARGA instrument. During the sampling periods, the $NO_3^-$                                                                         |
| 170 | concentrations varied from 0.1 to 85.1 $\mu g~m^{\text{-3}}$ with a mean value of 16.7 $\pm$ 12.8 $\mu g~m^{\text{-}}$                                      |
| 171 | $^3.$ The $SO_4{}^{2\text{-}}$ concentrations ranged from 1.7 to 96.2 $\mu g$ m $^{-3}$ and averaged 14.9 $\pm$ 9.1                                         |
| 172 | $\mu g~m^{\text{-3}}.$ The $NH_4{}^+$ concentrations fluctuated between 0.8 and 44.9 $\mu g~m^{\text{-3}}$ with a mean                                      |
| 173 | value of 10.7 $\pm$ 6.7 $\mu g$ m $^{-3}.$ On average, SIA counted for 91 % of the total water-                                                             |
| 174 | soluble inorganic ions (TWSIIs) during the entirety of the sampling periods (see                                                                            |
| 175 | Figure 3a). Among these species, $NO_3^-$ accounted for 35 % of the TWSIIs, followed                                                                        |
| 176 | by SO <sub>4</sub> <sup>2-</sup> (33 %) and NH <sub>4</sub> <sup>+</sup> (24 %). The abundances of other ions, including Cl <sup>-</sup> , K <sup>+</sup> , |
| 177 | $Ca^{2+}$ , $Na^+$ and $Mg^{2+}$ , were 5, 2, 1, 0.7 and 0.3 %, respectively. Figure S1 shows the                                                           |
| 178 | scatter plot of the equivalent concentrations of the cations (Na <sup>+</sup> , NH4 <sup>+</sup> , K <sup>+</sup> , Mg <sup>2+</sup> and                    |
| 179 | $Ca^{2+}$ ) and anions (Cl <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> ). As seen, good correlations between cations      |
| 180 | and anions were found during the various sampling periods. The ratio of cation-to-                                                                          |
| 181 | anion was very close to 1.0 during each season, reflecting an ionic balance. This also                                                                      |

7





| 182 | indicated that our data exhibited good quality and was able to be used for the further                           |
|-----|------------------------------------------------------------------------------------------------------------------|
| 183 | analysis of scientific issues.                                                                                   |
| 184 | All SIA species exhibited similar seasonal patterns, with lower concentrations in                                |
| 185 | the summer, especially for NO3 <sup>-</sup> . The average concentrations of nitrate were 6.7 and                 |
| 186 | 5.7 $\mu g~m^{\text{-}3}$ in the summertime of 2016 and 2017, respectively (see Figure S2). These                |
| 187 | values were much lower than those observed during other seasons. The local                                       |
| 188 | meteorological conditions, which were favorable for the dilution of air pollution, were                          |
| 189 | one of the reasons for the declined NO3 <sup>-</sup> concentrations during the hot seasons (Zhang                |
| 190 | and Cao, 2015). Another important reason for this effect was attributed to the                                   |
| 191 | formation process of $PM_{2.5}$ nitrate, which is very sensitive to the ambient temperature                      |
| 192 | and relative humidity (Lin and Cheng, 2007). Figure S3a depicts the theoretical                                  |
| 193 | equilibrium constant (P_{HNO3} \cdot P_{NH3}) of partitioned NO_3^- and NH4^+ between the particle               |
| 194 | and gas phase. Note that the Y-axis is presented on a log scale. The theoretical $P_{\rm HNO3}$ $\cdot$          |
| 195 | $P_{\rm NH3}$ values increased exponentially with increasing ambient temperature but                             |
| 196 | decreased with increasing RH. This indicated that NH4NO3 would be partitioned into                               |
| 197 | the gas phase due to high equilibrium constants under high-temperature and low-RH                                |
| 198 | conditions. Figure S3b illustrates the time series of the theoretical and observed $P_{\rm HNO3}$                |
| 199 | $\cdot$ $P_{\text{NH3}}$ values during the sampling periods. Obviously, higher theoretical equilibrium           |
| 200 | constants and lower observed $P_{\rm HNO3}\cdot P_{\rm NH3}$ values were found during the summer.                |
| 201 | This suggested that more $\mathrm{NO}_3^-$ and $\mathrm{NH}_4^+$ would tend to be partitioned into the gas       |
| 202 | phase, resulting in lower particulate nitrate concentrations during hot seasons (Lin and                         |
| 203 | Cheng, 2007).                                                                                                    |
| 204 | Apart from seasonal variations, pronounced diurnal patterns were also found for                                  |
| 205 | SIA species (see Figure 4). NO <sub>3</sub> <sup>-</sup> exhibited similar diel cycles during different seasons, |
| 206 | with higher concentrations in the early morning (4 a.m 8 a.m.) and lower levels                                  |
| 207 | between 2 p.m. and 5 p.m. The higher nitrate in the early morning might be due to $\stackrel{\circ}{}_{\infty}$  |

8





| 208                                                                | enhanced nitrate formation in the residual layer in the mixing troposphere (Baasandorj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 209                                                                | et al., 2017; Prabhakar et al., 2017). The lower concentrations of nitrate during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 210                                                                | daytime might be attributed to high temperatures, which inhibited the build-up of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 211                                                                | nitrate, especially during the summertime. In terms of sulfate, higher concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 212                                                                | were observed between 6 am. and 1 p.m., indicating that the formation rate of sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 213                                                                | was higher than the removal/dilution rate, leading to an increase of the sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 214                                                                | concentration during the daytime. Nevertheless, the diurnal patterns of $\mathrm{NH_4^+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 215                                                                | mimicked those of NO3 <sup>-</sup> , showing lower concentrations during the daytime. This was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 216                                                                | explained by the drastic decrease of particulate NH4NO3 concentrations under high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 217                                                                | temperatures and low relative humidity, resulting in lower $NH_4^+$ levels during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 218                                                                | daytime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 219                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 220                                                                | 3.2 Enhancements of nitrate at high PM2.5 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 221                                                                | Figure S4 shows the scatter plots of $NO_3^-$ , $SO_4^{2-}$ and $NH_4^+$ against PM <sub>2.5</sub> . As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                    | Figure S4 shows the scatter plots of NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> against PM <sub>2.5</sub> . As seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 221                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 221<br>222                                                         | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 221<br>222<br>223                                                  | seen, the slopes of $NO_3^-$ ( $NO_3^-$ vs. $PM_{2.5}$ mass), $SO_4^{2-}$ and $NH_4^+$ were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of $NO_3^-$ during the high-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 221<br>222<br>223<br>224                                           | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 221<br>222<br>223<br>224<br>225                                    | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$ 150 µg/m <sup>3</sup> ), NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> contributed 39, 28 and 24 % of the TWSIIs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 221<br>222<br>223<br>224<br>225<br>226                             | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$ 150 µg/m <sup>3</sup> ), NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> contributed 39, 28 and 24 % of the TWSIIs, respectively (Figure 3b). However, the relative abundances of NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                    |
| 221<br>222<br>223<br>224<br>225<br>226<br>227                      | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$ 150 µg/m <sup>3</sup> ), NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> contributed 39, 28 and 24 % of the TWSIIs, respectively (Figure 3b). However, the relative abundances of NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> during low PM <sub>2.5</sub> concentrations (hourly PM <sub>2.5</sub> < 35 µg/m <sup>3</sup> , see Figure 3c) were 29, 37                                                                                                                                                                                                                                                          |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228               | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$ 150 µg/m <sup>3</sup> ), NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> contributed 39, 28 and 24 % of the TWSIIs, respectively (Figure 3b). However, the relative abundances of NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> during low PM <sub>2.5</sub> concentrations (hourly PM <sub>2.5</sub> < 35 µg/m <sup>3</sup> , see Figure 3c) were 29, 37 and 23 %, respectively. In recent years, dramatically enhanced amounts of nitrate                                                                                                                                                                        |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229        | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$ 150 µg/m <sup>3</sup> ), NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> contributed 39, 28 and 24 % of the TWSIIs, respectively (Figure 3b). However, the relative abundances of NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> during low PM <sub>2.5</sub> concentrations (hourly PM <sub>2.5</sub> < 35 µg/m <sup>3</sup> , see Figure 3c) were 29, 37 and 23 %, respectively. In recent years, dramatically enhanced amounts of nitrate aerosols during high-PM events have been observed at many urban sites in China                                                                                         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230 | seen, the slopes of NO <sub>3</sub> <sup>-</sup> (NO <sub>3</sub> <sup>-</sup> vs. PM <sub>2.5</sub> mass), SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> were 0.30, 0.24 and 0.19, respectively. This suggested that the increasing rate of NO <sub>3</sub> <sup>-</sup> during the high-PM <sub>2.5</sub> events was higher than those of other SIA species. At high PM <sub>2.5</sub> levels (PM <sub>2.5</sub> $\geq$ 150 µg/m <sup>3</sup> ), NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> contributed 39, 28 and 24 % of the TWSIIs, respectively (Figure 3b). However, the relative abundances of NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and NH <sub>4</sub> <sup>+</sup> during low PM <sub>2.5</sub> concentrations (hourly PM <sub>2.5</sub> < 35 µg/m <sup>3</sup> , see Figure 3c) were 29, 37 and 23 %, respectively. In recent years, dramatically enhanced amounts of nitrate aerosols during high-PM events have been observed at many urban sites in China (Wen et al., 2015; Wang et al., 2017; 2018; Zou et al., 2018). For instance, Zou et al. |





| 234 | (5.3) of sulfate. Wang et al. (2018) noted that the enhancement ratio of $NO_3^-$ (~6)                     |
|-----|------------------------------------------------------------------------------------------------------------|
| 235 | between haze and clear days in Ningbo of the YRD region was much higher than that                          |
| 236 | of $SO_4^{2-}$ (~3). These findings suggested that $NO_3^{-}$ was a major contributing species to          |
| 237 | fine particles during haze days since its increasing ratio between haze and non-haze                       |
| 238 | days was much higher than those of other SIA species, such as sulfate and                                  |
| 239 | ammonium.                                                                                                  |
| 240 |                                                                                                            |
| 241 | 3.3 Nitrate formation under different ammonium regimes                                                     |
| 242 | Ammonium is a major species that neutralizes particulate $SO_4^{2-}$ and $NO_3^{-}$ . In the               |
| 243 | atmosphere, $SO_4^{2-}$ competes with $NO_3^{-}$ for $NH_4^+$ during their formation processes, and        |
| 244 | therefore, the relationship between the molar ratios of $NO_3^-/SO_4^{2-}$ and $NH_4^+/SO_4^{2-}$ can      |
| 245 | give us a hint for understanding the formation of NO3 <sup>-</sup> under different ammonium                |
| 246 | regimes (Pathak et al., 2009; He et al., 2012; Tao et al., 2016). In an ammonium-rich                      |
| 247 | regime, the HNO3 produced by both gas oxidation and heterogeneous process reacts                           |
| 248 | (or is neutralized) with "excess ammonium" at a $NH_4^+/SO_4^{2-}$ molar ratio > 2                         |
| 249 | (theoretical value in an $NH_4^+$ -rich regime) when sulfate is completely neutralized by                  |
| 250 | NH4 <sup>+</sup> (Squizzato et al., 2013; Ye et al., 2011). In contrast, nitrate can be found under        |
| 251 | ammonium-poor conditions with a theoretical $\mathrm{NH_4^+}/\mathrm{SO_4^{2-}}$ value that should be less |
| 252 | than 2 (Pathak et al., 2009). Under $NH_4^+$ -poor conditions, HNO <sub>3</sub> reacts with other          |
| 253 | cations, such as the calcium carbonate frequently found in natural dust.                                   |
| 254 | Figure 5 shows the scatter plot of the molar ratios of $NO_3^-/SO_4^{2-}$ against                          |
| 255 | $\rm NH_4^+/SO_4^{2^-}.$ It is found that good correlations exist between $\rm NO_3^-/SO_4^{2^-}$ and      |
| 256 | $NH_4^+/SO_4^{2-}$ under $NH_4^+$ -rich regimes, with a correlation coefficient of 0.84 - 0.91.            |
| 257 | Utilizing the linear regression model, we suggested that nitrate aerosols (in $NH_4^+$ -rich               |
| 258 | regimes) began to form when the $NH_4^+/SO_4^{2-}$ molar ratios exceeded the criterion                     |
|     |                                                                                                            |

values of 1.7-2.0 during the different seasons (see in Table 1). The criterion values





| 260 | below 2 suggested that part of the sulfate might have existed in other forms, such as                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 261 | ammonium bisulfate. On the other hand, under ammonium-rich conditions, nitrate                                                     |
| 262 | concentrations should be positively proportional to "excess ammonium"                                                              |
| 263 | concentrations, a relationship which was defined as $[excess-NH_4^+] = (NH_4^+/SO_4^{2-} - CO_4^{-1})^{-1}$                        |
| 264 | criterion value) × $[SO_{4-}^{2-}]$ (Pathak et al., 2009) (sulfate is in the units of nmol m <sup>-3</sup>                         |
| 265 | here). The criterion values were acquired from the regression models, as listed in                                                 |
| 266 | Table 1. The results revealed that the excess $NH_4^+$ concentrations varied from -283 to                                          |
| 267 | 1422 nmol m <sup>-3</sup> (see Figure 6), and only 1 % of the excess-NH <sub>4</sub> <sup>+</sup> data were lower than             |
| 268 | zero, reflecting that $NO_3^-$ formation in Nanjing occurred primarily under the $NH_4^+$ -                                        |
| 269 | rich conditions. Moreover, the $excess-NH_4^+$ had apparent diurnal cycles, with higher                                            |
| 270 | concentrations in the early morning and lower concentrations at midday and in the                                                  |
| 271 | early afternoon (see Figure 4, where we converted the units from nmol m <sup>-3</sup> to $\mu$ g m <sup>-3</sup> ).                |
| 272 | The diurnal patterns of $NO_3^-$ mimicked those of the excess $NH_4^+$ . This also suggested                                       |
| 273 | that particulate NO3 <sup>-</sup> formation occurred mainly under NH4 <sup>+</sup> -rich conditions. Figure                        |
| 274 | 6 illustrates the relationship between the nitrate and excess $\mathrm{NH_4^+}$ molar concentrations                               |
| 275 | during the sampling periods. The nitrate molar concentrations correlated linearly with                                             |
| 276 | the excess $NH_4^+$ molar concentrations with a slope of approximately 1.0, which was                                              |
| 277 | consistent with the molar ratio of reaction between HNO3 and NH3. Interestingly,                                                   |
| 278 | some scattered points were found in high ammonium concentrations (excess-NH4 $^+\geq$                                              |
| 279 | 900 nmol/m <sup>3</sup> ~ 16.2 $\mu$ g/m <sup>3</sup> ), implying that residual NH <sub>4</sub> <sup>+</sup> might be presented in |
| 280 | another form such as $NH_4Cl$ under high- $NH_4^+$ conditions. On the contrary, $NO_3^-$                                           |
| 281 | aerosols can be produced without involving NH3; therefore, NO3 <sup>-</sup> did not correlate                                      |
| 282 | well with the excess NH4 <sup>+</sup> under a NH4 <sup>+</sup> -poor regime.                                                       |
| 283 | In this study, high nitrate concentrations were always found under $\mathrm{NH_4^+}$ -rich                                         |
| 284 | regimes, elucidating that nitrate during high PM levels in Nanjing were dominantly                                                 |
| 285 | produced by the reaction of nitric acid (produced from $NO_2 + OH$ and $N_2O_5 + H_2O$ )                                           |





| 286 | with NH <sub>3</sub> . Figure 6 also shows the nitrate concentrations against the excess $\mathrm{NH_4^+}$                |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 287 | observed in various cities of China during the summertime (Pathak et al., 2009;                                           |
| 288 | Griffith et al., 2015). In Beijing and Shanghai, high nitrate concentrations during the                                   |
| 289 | summertime were found under $\mathrm{NH_4^+}$ -deficient conditions, which was very different                             |
| 290 | from the findings of this work. In these studies (Pathak et al., 2009; Griffith et al.,                                   |
| 291 | 2015), the high nitrate concentrations associated with $NH_4^+$ -poor conditions might be                                 |
| 292 | due to the lower excess $\mathrm{NH_4^+}$ concentrations under high-SO <sub>4</sub> <sup>2-</sup> conditions at that time |
| 293 | since the strict control of SO <sub>2</sub> emissions started in 2013. In recent years, the reduction                     |
| 294 | of anthropogenic SO <sub>2</sub> emissions decreased the airborne $SO_4^{2-}$ concentrations, resulting                   |
| 295 | in more excess $\mathrm{NH_4^+}$ and leading to nitrate aerosol formation under $\mathrm{NH_4^+}\text{-rich}$             |
| 296 | regimes. This argument can be supported by the recent results shown in Figure S5, in                                      |
| 297 | which high nitrate concentrations in Beijing were always found under $\mathrm{NH_4^+}$ -rich                              |
| 298 | regimes.                                                                                                                  |
| 299 |                                                                                                                           |

## 300 3.4 Nitrate formation mechanism during high-PM<sub>2.5</sub> episodes

In this section, we attempted to explore the formation mechanisms of nitrate aerosols during high PM<sub>2.5</sub> levels. Here, nitrogen conversion ratio (Fn) was used to evaluate the conversion capability of NO<sub>2</sub> to total nitrate (gaseous and particulate NO<sub>3</sub><sup>-</sup>), and it can be defined as (Khoder, 2002; Lin et al., 2006):

$$F_{n} = \frac{GNO_{3}^{-} + PNO_{3}^{-}}{GNO_{3}^{-} + PNO_{3} + NO_{2}}$$
(1)

307 where  $GNO_3^-$  and  $PNO_3^-$  represent the  $NO_2$  concentrations in nitric acid and 308 particulate nitrate, respectively, with the units of  $\mu g m^{-3}$ . The results showed that the 309 Fn values during the sampling periods varied from 0.01 to 0.57 with a mean value of 310  $0.14 \pm 0.09$  (see Figure 2e). This value was comparable to that (0.17) in Taichung, an 311 urban city in Taiwan, but was much higher than that (0.059) in Dokki, Egypt (Khoder,





| 312 | 2002; Lin et al., 2006). On the other hand, Fn displayed significant diurnal cycles,                       |
|-----|------------------------------------------------------------------------------------------------------------|
| 313 | with the highest value in the early morning (see Figure 4). This enhanced Fn                               |
| 314 | coincided with increasing ALWC, suggesting heterogeneous reaction since ALWC is                            |
| 315 | one of the key parameters which favors the transformation of $N_2O_5$ to liquid HNO <sub>3</sub> in        |
| 316 | this process. On the contrary, a second peak of Fn was found in the early afternoon                        |
| 317 | when $Ox (Ox = NO_2 + O_3)$ , an index of the oxidation capacity) concentrations                           |
| 318 | increased. This suggested that the total nitrate formation was attributed to the gas-                      |
| 319 | phase reaction of $NO_2 + OH$ during the daytime.                                                          |
| 320 | Both gas-phase oxidation and heterogeneous reactions are potential pathways of                             |
| 321 | NH4NO3 formation. Here, we attempted to analyze the correlations of Fn vs. OH and                          |
| 322 | Fn vs. ALWC to investigate whether gas-phase oxidation or heterogeneous reactions                          |
| 323 | were the dominant mechanism of nitrate production. In this work, the OH radical                            |
| 324 | concentrations were not measured; hence, we used $\mathrm{O}_{\mathrm{X}}$ as a proxy of OH. The ALWC      |
| 325 | was obtained by computing the ISOPROPIA II model as described in section 2.3.                              |
| 326 | Figure 7 illustrates the scatter plots of Fn against Ox and ALWC during the high-                          |
| 327 | $PM_{2.5}$ events. As seen, Fn correlated well with the ALWC, with a correlation                           |
| 328 | coefficient (R) of 0.75 at a 95 % confidence level ( $p < 0.05$ ). However, a poor                         |
| 329 | correlation was found between Fn and Ox. This elucidated that nitrate formation                            |
| 330 | during the high-PM <sub>2.5</sub> events in Nanjing was attributed to heterogeneous reactions              |
| 331 | rather than to gas-phase processes. This result was consistent with recent conclusions                     |
| 332 | reached by oxygen isotope techniques, in which the hydrolysis of $N_2O_5$ in preexisting                   |
| 333 | aerosols was found to be a major mechanism of NO <sub>3</sub> <sup>-</sup> formation (Chang et al., 2018). |
| 334 |                                                                                                            |
| 335 | 3.5 Case study and formation rate of NO3 <sup>-</sup> during PM2.5 episodes                                |
| 336 | Figure 8 shows several high-PM <sub>2.5</sub> events observed from March 3 to 6 in 2016.                   |
| 227 | In ease I, the high DM concentrations started at 6 n m, on March 2 and ended at 2                          |

337 In case I, the high  $PM_{2.5}$  concentrations started at 6 p.m. on March 3 and ended at 3





| 338 | a.m. on March 4. During this event, the $SO_4^{2-}$ and $NH_4^+$ concentrations remained at                                                     |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 339 | almost constant levels, but the NO3 <sup>-</sup> concentrations revealed a slight enhancement. In                                               |  |  |  |
| 340 | the early morning of March 4, the $\mathrm{NO}_3^-$ concentrations increased from 39.4 to 47.8 $\mu g$                                          |  |  |  |
| 341 | m <sup>-3</sup> within 4 hours, resulting in a nitrate production rate of 2.1 $\mu g$ m <sup>-3</sup> h <sup>-1</sup> (~5.5 % h <sup>-1</sup> , |  |  |  |
| 342 | the calculation can be seen in the supplementary material). In case II, high $PM_{2.5}$                                                         |  |  |  |
| 343 | concentrations were observed from 8. a.m. to 2. p.m. on March 4. The NO3 <sup>-</sup>                                                           |  |  |  |
| 344 | concentrations were much higher than those of SO4 <sup>2-</sup> , indicating nitrate-dominated                                                  |  |  |  |
| 345 | aerosols. In this case, the $\rm NO_3^-$ concentrations increased from 38.1 to 51.2 $\mu g~m^{-3}$                                              |  |  |  |
| 346 | within 6 hours, suggesting that the increasing rate of $\rm NO_3^-$ was 2.2 $\mu g~m^{3}~h^{1}$ (2.4 % $h^{}$                                   |  |  |  |
| 347 | <sup>1</sup> ). Since the high NO <sub>3</sub> <sup>-</sup> concentrations occurred under high-Ox and low-ALWC                                  |  |  |  |
| 348 | conditions, this suggested that the gas-phase reaction of $NO_2 + OH$ might be the                                                              |  |  |  |
| 349 | dominant source of $NO_3^-$ production in this event. In case III, a rapid growth of the                                                        |  |  |  |
| 350 | PM <sub>2.5</sub> mass was found around midnight, along with a dramatic increase of NO <sub>3</sub> -                                           |  |  |  |
| 351 | concentrations from 11 p.m. on March 4 (31.0 $\mu g \ m^{\text{-}3})$ and maximizing at 1 a.m. the                                              |  |  |  |
| 352 | next day (64.5 $\mu g$ m $^{-3}).$ The increasing rate of NO3 $^{-}$ was estimated to be 8.4 $\mu g$ m $^{-3}$ h $^{-1}$                        |  |  |  |
| 353 | (~19.5 % $h^{-1}$ ), which was 4 times higher than those in case I and II. The high-nitrate                                                     |  |  |  |
| 354 | event was found under increasing ALWC and decreasing Ox concentration conditions,                                                               |  |  |  |
| 355 | suggesting that nitrate production occurred through heterogeneous processes. In case                                                            |  |  |  |
| 356 | IV, the enhancements of all SIA species coincided with increasing ALWC and                                                                      |  |  |  |
| 357 | declining Ox concentrations. Again, the enhancement of nitrate was attributed to                                                                |  |  |  |
| 358 | heterogeneous reactions rather than to gas-phase processes. In these events, the $NO_3^-$                                                       |  |  |  |
| 359 | production rate was estimated to be 13.4 $\mu g~m^{\text{-3}}~h^{\text{-1}}$ (~ 15.4 % $h^{\text{-1}}$ ).                                       |  |  |  |
| 360 | Through the sampling periods, a total of twelve high $PM_{2.5}$ events was found, and                                                           |  |  |  |
| 361 | the NO <sub>3</sub> <sup>-</sup> concentrations increased significantly during all the episodes (see in Table                                   |  |  |  |
| 362 | S1). Seven episodes suggested that heterogeneous processes $(N_2O_5 + H_2O)$ might be a                                                         |  |  |  |
| 363 | major pathway for nitrate formation since elevated $NO_3^-$ levels coincided with 14                                                            |  |  |  |

14





| 364 | increasing AWLC and decreasing Ox (or Ox remaining at a constant level). A level of                                                         |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 365 | approximately 70 % heterogeneous reactions was observed during the nighttime. In                                                            |  |  |  |
| 366 | these events, the average $\rm NO_3^-$ production rate was 12.6 $\pm$ 7.3 $\%$ $h^{-1}.$ On the contrary,                                   |  |  |  |
| 367 | $\mathrm{NO}_3^-$ concentrations rose with increasing Ox and decreasing ALWC in two $\mathrm{PM}_{2.5}$                                     |  |  |  |
| 368 | episodes. This finding indicated gas-phase processes (NO $_2$ + OH), and these gas-                                                         |  |  |  |
| 369 | phase reaction cases occurred mainly during the daytime. The average production rate                                                        |  |  |  |
| 370 | of NO3 <sup>-</sup> in these events was 2.5 $\pm$ 0.1 % h <sup>-1</sup> . Moreover, we also found some cases in                             |  |  |  |
| 371 | which the elevated NO3 <sup>-</sup> might have been from both gas-phase and heterogeneous                                                   |  |  |  |
| 372 | reactions, and the corresponding $\mathrm{NO_3^-}$ formation rate was approximately 7.5 $\pm$ 3.0 %                                         |  |  |  |
| 373 | h <sup>-1</sup> . In conclusion, enhancements of NO3 <sup>-</sup> usually occurred under increased ALWC                                     |  |  |  |
| 374 | and decreased Ox conditions, indicating that heterogeneous reactions provided the                                                           |  |  |  |
| 375 | dominant pathway of nitrate formation during the PM <sub>2.5</sub> episodes in Nanjing.                                                     |  |  |  |
| 376 | Moreover, the average production rate of $NO_3^-$ (12.6 % h <sup>-1</sup> ) by heterogeneous                                                |  |  |  |
| 377 | processes was 5 times higher than that $(2.5 \% h^{-1})$ of gas-phase reactions. This might                                                 |  |  |  |
| 378 | explain the abrupt increase of nitrate concentrations during the high PM <sub>2.5</sub> events.                                             |  |  |  |
| 379 |                                                                                                                                             |  |  |  |
| 380 | 3.6 NH <sub>3</sub> /HNO <sub>3</sub> limitation of nitrate aerosol formation                                                               |  |  |  |
| 381 | In Nanjing, high nitrate concentrations occurred mainly under NH4 <sup>+</sup> -rich                                                        |  |  |  |
| 382 | regimes, indicating the involvement of atmospheric NH <sub>3</sub> . This also demonstrated that                                            |  |  |  |
| 383 | both HNO3 and NH3 were crucial precursors for particulate nitrate formation.                                                                |  |  |  |
| 384 | Assuming that NH <sub>4</sub> NO <sub>3</sub> was the dominant form in PM <sub>2.5</sub> nitrate and that HNO <sub>3</sub> +NH <sub>3</sub> |  |  |  |
| 385 | was the major pathway for nitrate formation, we could then calculate the $\rm NH_4NO_3$                                                     |  |  |  |
| 386 | concentrations from the observed total nitrate and ammonium concentrations by the                                                           |  |  |  |
| 387 | following equation (Lin and Cheng., 2007):                                                                                                  |  |  |  |
| 388 | $[NH_4NO_3] = (\frac{[TNH_3] + [THNO_3] - \sqrt{([TNH_3] + [THNO_3])^2 - 4([TNH_3] [THNO_3] - k_2)}}{2})(2)$                                |  |  |  |





| 389 | $[NH_4NO_3] \le \min([TNH_3], [THNO_3]) $ (3)                                                                                                   |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 390 |                                                                                                                                                 |  |  |  |
| 391 | where [NH <sub>4</sub> NO <sub>3</sub> ] is the ammonium nitrate concentration with a unit of ppb. [TNH <sub>3</sub> ]                          |  |  |  |
| 392 | and [THNO <sub>3</sub> ] are the observed total ammonium ( $NH_3$ +excess- $NH_4^+$ ) and total nitrate                                         |  |  |  |
| 393 | (HNO <sub>3</sub> +NO <sub>3</sub> <sup>-</sup> ) concentrations, respectively. Both [TNH <sub>3</sub> ] and [THNO <sub>3</sub> ] are presented |  |  |  |
| 394 | in units of ppb. $k_2$ is the equilibrium constant of reaction R2 with a unit of ppb <sup>2</sup> . By                                          |  |  |  |
| 395 | using Eq. 2, we can estimate the [NH <sub>4</sub> NO <sub>3</sub> ] concentration with a unit of ppb <sup>2</sup> , which is                    |  |  |  |
| 396 | subsequently converted to $\mu g m^{-3}$ under the specific ambient temperature and relative                                                    |  |  |  |
| 397 | humidity.                                                                                                                                       |  |  |  |
| 398 | During the sampling periods, the concentrations of total ammonium varied from                                                                   |  |  |  |
| 399 | 9.3 to 96.6 ppb with a mean value of 23.6 ppb. The concentrations of total nitrate                                                              |  |  |  |
| 400 | ranged from 1.8 to 32.9 ppb with a mean value of 6.5 ppb. The average ratio of                                                                  |  |  |  |
| 401 | $[THNO_3]/[TNH_3]$ was 0.25. Figure 9 shows the contour plot of the NH <sub>4</sub> NO <sub>3</sub>                                             |  |  |  |
| 402 | concentrations relative to the various $NH_3$ and $HNO_3$ levels calculated by Eq. 2. The                                                       |  |  |  |
| 403 | observed total nitrate and ammonium concentrations are also plotted. As seen, the                                                               |  |  |  |
| 404 | ridge line splits the plot into two parts; one is the NH3-limited area (left), and the                                                          |  |  |  |
| 405 | other is the HNO <sub>3</sub> -limited area (right). In the current work, most of the observed data                                             |  |  |  |
| 406 | fell into the HNO3-limited regime. This implied that the reduction of NOx emissions                                                             |  |  |  |
| 407 | might be an important way to decrease airborne nitrate concentrations and ameliorate                                                            |  |  |  |
| 408 | the air quality in Nanjing.                                                                                                                     |  |  |  |
| 409 |                                                                                                                                                 |  |  |  |
| 410 | 4. Conclusion and remarks                                                                                                                       |  |  |  |
|     |                                                                                                                                                 |  |  |  |

Four intensive online measurements of water-soluble ions in  $PM_{2.5}$  were carried out in Nanjing City in 2016 and 2017 to realize the evolutions of SIA and the potential formation mechanisms of particulate nitrate. During the sampling periods, the average concentrations of  $NO_3^-$ ,  $SO_4^{2-}$  and  $NH_4^+$  were 16.7, 14.9 and 10.7 µg m<sup>-3</sup>, respectively.





| 415 | This indicated that NO3 <sup>-</sup> dominated the SIA. Significant seasonal variations and                   |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------|--|--|--|
| 416 | diurnal cycles were found for all SIA species. The low NO3 <sup>-</sup> concentrations observed               |  |  |  |
| 417 | during the summer daytime could be attributed to the declined observed $P_{\text{HNO3}} \cdot P_{\text{NH3}}$ |  |  |  |
| 418 | values under high-temperature conditions. Obvious enhancements of NO3 <sup>-</sup> were found                 |  |  |  |
| 419 | in terms of both absolute concentrations and relative abundances during the $PM_{2.5}$                        |  |  |  |
| 420 | episodes, indicating that $NO_3^-$ was a major contributing species to $PM_{2.5}$ . Different                 |  |  |  |
| 421 | from the results obtained in Beijing and Shanghai, high nitrate concentrations always                         |  |  |  |
| 422 | occurred under $\mathrm{NH_4^+}$ -rich regimes. The nitrogen conversion ratio, Fn, correlated well            |  |  |  |
| 423 | with the ALWC but not with Ox during high-PM2.5 episodes. These findings indicated                            |  |  |  |
| 424 | that NO <sub>3</sub> <sup>-</sup> aerosols at the receptor site were mainly produced by heterogeneous         |  |  |  |
| 425 | reactions $(N_2O_5 + H_2O)$ with the involvement of $NH_3$ . The average production rate of                   |  |  |  |
| 426 | $\mathrm{NO}_3{}^{-}$ from heterogeneous reactions was estimated to be 12.6 % $h^{-1},$ which was 5 time      |  |  |  |
| 427 | higher than that of gas-phase reactions. According to the observations and                                    |  |  |  |
| 428 | calculations, particulate nitrate formation in Nanjing was HNO3-limited, suggesting                           |  |  |  |
| 429 | that the control of NOx emissions will be able to decrease the nitrate concentration                          |  |  |  |
| 430 | and improve the air quality in this industrial city.                                                          |  |  |  |
| 431 | During the last decade, the mass ratios of nitrate-to-sulfate in PM <sub>2.5</sub> in the YRD                 |  |  |  |
| 432 | region have been found to range from 0.3 to 0.7 (Lai et al., 2007; Wang et al., 2003;                         |  |  |  |
| 433 | 2006; Yang et al., 2005; Yao et al., 2002), reflecting that the $SO_4^{2-}$ concentration was                 |  |  |  |
| 434 | much higher than the $NO_3^-$ concentration. In the current study, the average mass ratio                     |  |  |  |
| 435 | of nitrate-to-sulfate was 1.1. Indeed, high nitrate-to-sulfate mass ratios of > 1 were                        |  |  |  |
| 436 | also observed in other mega-cities of China recently (Ge et al., 2017; Wei et al., 2018;                      |  |  |  |
| 437 | Ye et al., 2017; Zou et al., 2018). The elevated nitrate-to-sulfate ratio should be due to                    |  |  |  |
| 438 | the dramatic reduction of SO <sub>2</sub> emissions. The enhanced ratio also suggests that we                 |  |  |  |
| 439 | should pay more attention to and develop some strategies for the reduction of NOx                             |  |  |  |
| 440 | emissions, leading to declined nitrate concentrations in the atmosphere and                                   |  |  |  |

17





| 441 | improvement of the air quality in China.                                                                 |  |
|-----|----------------------------------------------------------------------------------------------------------|--|
| 442 |                                                                                                          |  |
| 443 | Data availability                                                                                        |  |
| 444 | All the data used in this paper are available from the corresponding author upon                         |  |
| 445 | request (dryanlinzhang@outlook.com or zhangyanlin@nuist.edu.cn).                                         |  |
| 446 |                                                                                                          |  |
| 447 | Author contributions                                                                                     |  |
| 448 | YLZ conceived and designed the study. YCL analyzed the data and wrote the                                |  |
| 449 | manuscript with YLZ. FM and MB performed aerosol sampling and data analyses                              |  |
| 450 | with YCL.                                                                                                |  |
| 451 |                                                                                                          |  |
| 452 | Competing interests                                                                                      |  |
| 453 | The authors declare that they have no conflict of interest.                                              |  |
| 454 |                                                                                                          |  |
| 455 | Acknowledgements                                                                                         |  |
| 456 | This study was financially supported by the National Key R&D Program of China                            |  |
| 457 | (Grant No. 2017YFC0212704), the Natural Scientific Foundation of China (Nos.                             |  |
| 458 | 91643109 and 41603104), the Provincial Natural Science Foundation of Jiangsu                             |  |
| 459 | (Grant No. BK20180040) and Jiangsu Innovation & Entrepreneurship Team.                                   |  |
| 460 |                                                                                                          |  |
| 461 | References                                                                                               |  |
| 462 | Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin,                 |  |
| 463 | R., Kelly, K., Zarzana, K. J., Whiteman, C. D., Bube, W. P., Tonnesen, G.,                               |  |
| 464 | Jaramillo, J. C. and Sohl, J.: Coupling between chemical and meteorological                              |  |
| 465 | processes under persistent coal-air poor conditions: evolution of wintertime PM2.                        |  |
| 466 | events and N <sub>2</sub> O <sub>5</sub> observation in Utah's Salt Lake Valley. Environ. Sci. Technol., |  |

18





- 467 **51**, 5941-5950, https://doi.org/10.1021/acs.est.6b06603, 2017.
- 468 Brauer, M., Hoek, G., Vliet, V. P., Meliefste, K., Fischer, P. H., Wijga, A., Koopman,
- 469 L. P., Neijens, H. J., Gerritsen, J., Kerkhof, M., Heinrich, J., Bellander, T., and
- 470 Brunekreef, B.: Air pollution from traffic and the development of respiratory
- 471 infections and asthmatic and allergic symptoms in children. Am. J. Respir. Crit.
- 472 *Care Med.*, **166**, 1092-1098, https://doi.org/10.1146/rccm.200108-007OC, 2002.
- 473 Brown, S. S., and Stutz, J.: Nighttime radical observation and chemistry. *Chem. Soc.*
- 474 *Rev.*, **41**, 6405-6447, https://doi.org/10.1039/c2cs35181a, 2012.
- 475 Calvert, J. G., and Stockwell, W. R.: Acid generation in the troposphere by gas-phase
- 476 chemistry. Environ. Sci. Technol., 17, 428-443,
- 477 https://doi.org/10.1021/es00115a727, 1983.
- 478 Chan, C. K., and Yao, X.: Air pollution in mega cities in China. Atmos. Enviro., 42, 1-
- 479 42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
- 480 Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.:
- 481 Heterogeneous atmospheric chemistry, ambient measurements, and model
- 482 calculations of N<sub>2</sub>O<sub>5</sub>: a review. *Aerosol Sc. Technol.*, **45**, 655 685,
- 483 https://doi.org/10.1080/02786826.2010.551672, 2011.
- 484 Defino, R. J., Siotuas, C., and Malik, S.: Potential role of ultrafine particles in
- 485 associations between airborne particle mass and cardiovascular health. *Environ*.
- 486 *Health Perspect.*, **113**, 934-938, https://doi.org/10.1289/ehp.7938, 2005.
- 487 Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient
- 488 thermodynamic equilibrium model for  $K^+-Ca^{2+}-Mg^{2+}-NH_4^+-Na^+-SO_4^{2-}-NO_3^--Cl^-$
- 489 H<sub>2</sub>O. Atmos. Chem. Phys., 7, 4639-4659, https://doi.org/10.5194/acp-7-4639-
- 490 2007, 2007.
- 491 Ge, X., Li, L., Chen, Y., Chen, H., Wu, D., Wang, J., Xie, X., Ge, S., Ye, Z., Xu, J.,
- 492 and Chen, M.: Aerosol characteristics and sources in Yangzhou, China resolved





| 493 | by offline aerosol mass spectrometry and other techniques. Environ. Pollut., 225,                 |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|
| 494 | 74-85, https://doi.org/10.1016/j.encpol.2017.03.044, 2017.                                        |  |  |
| 495 | Goodman, A. L., Underwood, G. M., and Grassian, V. H.: A laboratory study of the                  |  |  |
| 496 | heterogeneous reaction of nitric acid on calcium carbonate particles. J. Geophys.                 |  |  |
| 497 | Res. Atmos., 105, 29053-29064, https://doi.org/10.1029/2000JD900396, 2000.                        |  |  |
| 498 | Griffith, S. M., Huang, X. H. H., Louie, P. K. K., and Yu, J. Z.: Characterizing the              |  |  |
| 499 | thermodynamic and chemical composition factors controlling PM <sub>2.5</sub> nitrate:             |  |  |
| 500 | Insights from two years of online measurements in Hong Kong. Atmos. Environ.,                     |  |  |
| 501 | 122, 864-875, https://doi.org/10.1016/j.atmosenv.2015.02.009, 2015.                               |  |  |
| 502 | Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Heti Jr., J. R., Carton,          |  |  |
| 503 | A. G., Lee, SH., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine                      |  |  |
| 504 | 04 particle water and pH in the southeastern United States. <i>Atmos. Chem. Phys.</i> , <b>15</b> |  |  |
| 505 | 5221-5228. https://doi.org/10.5194/acp-15-5211-2015, 2015.                                        |  |  |
| 506 | He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., and Chen, G.: Spatial and                  |  |  |
| 507 | $07$ seasonal variability of $PM_{2.5}$ acidity at two Chinese megacities: insights into the      |  |  |
| 508 | formation of secondary inorganic aerosols. <i>Atmos. Chem. Phys.</i> , <b>12</b> , 1377-1395.     |  |  |
| 509 | 09 https://doi.org/10.5194/acp-12-1377-2012, 2012.                                                |  |  |
| 510 | Huang, RJ., Zhang, Y., Bozzetti, C., Ho, KF., Cao, JJ., Han, Y., Daellenbach, R.,                 |  |  |
| 511 | Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns,            |  |  |
| 512 | E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikkowski, M., Abbaszade,                    |  |  |
| 513 | G., Schnelle-Kreis, J., Zimmerman, R., An, Z., Szidat, S., Baltensperger, U.,                     |  |  |
| 514 | Haddad, I. E., and Prévôt, A. H.: High secondary aerosol contribution to                          |  |  |
| 515 | particulate pollution during haze events in China. Nature, 514, 218-222,                          |  |  |
| 516 | https://doi.org/10.1038/nature13774, 2014a.                                                       |  |  |
| 517 | Huang, Y., Shen, H., Chen, H., Wang, R., Zhang, Y., Su, S., Chen, Y., Lin, N., Zhong,             |  |  |
| 518 | Q., Wang, X., Liu, J., Li, B., Liu, W., and Tao, S.: Quantification of global primary             |  |  |





| 519 | emissions of $PM_{2.5}$ , $PM_{10}$ and TSP from combustion and industrial process sources.                        |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 520 | Environ. Sci. Technol., 48, 13834-13843, https://doi.org/10.1021/es503696k                                         |  |  |  |  |
| 521 | 2014b.                                                                                                             |  |  |  |  |
| 522 | Khoder, M. I.: Atmospheric conversion of sulfur dioxide to particulate sulfate and                                 |  |  |  |  |
| 523 | nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area.                                  |  |  |  |  |
| 524 | Chemosphere, 49, 675-684, https://doi.org/10.1016/S0045-6535(02)00391-0,                                           |  |  |  |  |
| 525 | 2002.                                                                                                              |  |  |  |  |
| 526 | Kong, L., Yang, Y., Zhang, S., Zhao, X., Du, H., Fu, H., Zhang, S., Cheng, T., Yang,                               |  |  |  |  |
| 527 | X., Chen, J., Wu, D., Sheng, J., Hong, S., and Jiao, L.: Observation of linear                                     |  |  |  |  |
| 528 | dependence between sulfate and nitrate in atmospheric particles. J. Geophys. Res.                                  |  |  |  |  |
| 529 | Atmos., 119, 341-361, https://doi.org/10.1002/2013JD020222, 2014.                                                  |  |  |  |  |
| 530 | Lin, YC., and Cheng, MT.: Evaluation of formation rates of NO <sub>2</sub> to gaseous and                          |  |  |  |  |
| 531 | particulate nitrate in the urban atmosphere. Atmos. Environ., 41, 1903-1910,                                       |  |  |  |  |
| 532 | https://doi.org/10.1016/j.atmosenv.2006.10.065, 2007.                                                              |  |  |  |  |
| 533 | Lin, YC., Cheng, MT., Ting, WY., and Yeh, CR.: Characteristics of gaseous                                          |  |  |  |  |
| 534 | HNO <sub>2</sub> , HNO <sub>3</sub> , NH <sub>3</sub> and particulate ammonium nitrate in an urban city of central |  |  |  |  |
| 535 | Taiwan. Atmos. Environ., 40(25), 4725-4733,                                                                        |  |  |  |  |
| 536 | https://doi.org/10.1016/j.atmosenv.2006.04.037, 2006.                                                              |  |  |  |  |
| 537 | Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and                               |  |  |  |  |
| 538 | Zhu, T.: Fine particle pH during severe haze episodes in northern China.                                           |  |  |  |  |
| 539 | Geophys. Res. Lett., 44, 5213-5222, https://doi.org/10.1002/2017GL073210,                                          |  |  |  |  |
| 540 | 2017.                                                                                                              |  |  |  |  |
| 541 | Mental, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous                                       |  |  |  |  |
| 542 | hydrolysis of dinitrogen pentoxide on aqueous aerosols. Phys. Chem. Chem.                                          |  |  |  |  |
| 543 | Phys., 1, 5451-5457, https://doi.org/10.1039/a905338g, 1999.                                                       |  |  |  |  |
| 544 | Nel, A.: Air pollution-related illness: effects of particles. Science, 308, 804-806,                               |  |  |  |  |





- 545 https://doi.org/10.1126/science.1108752, 2005.
- 546 Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou, Y., Song, Y.,
- 547 Zhang, Q., and Wang, Y.: Identifying ammonia hotspots in China using a national
- 548 observation work. *Environ. Sci. and Technol.*, **52**, 3926-3934.
- 549 https://doi.org/10.1021.acs/est.7b05235, 2018.
- 550 Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM<sub>2.5</sub> ionic species in four
- 551 major cities of China: nitrate formation in an ammonia-deficient atmosphere.
- 552 *Atmos. Chem. and Phys.*, **9**, 1711-1722, https://doi.org/10.5194/acp-9-1711-2009,
- 5532009.
- 554 Prabhakar, G., Parworth, C. L., Zhang, X., Kim, H., Young, D. E., Beyersdorf, A. J.,
- 555 Ziemba, L. D., Nowak, J. B., Bertram, T. H., Faloona, I. C., Zhang, Q., and
- 556 Cappa, C. D.: Observational assessment of the role of nocturnal residual-layer
- 557 chemistry in determining daytime surface particulate nitrate concentrations.
- 558 Atmos. Chem. Phys., 17 (23), 14747-14770, https://doi.org/10.5194/acp-17-
- 559 14747-2017, 2017.
- 560 Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, Z., Rampazzo, G., and
- 561 Pavoni, B.: Factors determining the formation of secondary inorganic aerosol: a
- case study in the Po Valley (Italy). *Atmos. Chem. and Phys.*, **13**, 1927-1339,
- 563 https://doi.org/10.5194/acp-13-1927-2013, 2013.
- 564 Tao, Y., Ye, X., Ma, Z., Xie, Y., Wang, R., Chen, J., Yang, X., and Jiang, S.: Insights
- 565 into different nitrate formation mechanisms from seasonal variations of secondary
- 566 inorganic aerosols in Shanghai. *Atmos. Environ.*, 145, 1-9,
- 567 https://doi.org/10.1016/j.atmosenv.2016.09.012, 2016.
- 568 ten Brink, H., Otjes, R., Jongejan, P., and Slanina, S.: An instrument for semi-
- 569 continuous monitoring of the size-distribution of nitrate, ammonium, sulfate and
- 570 chloride in aerosols. *Atmos. Environ.*, **41**, 2768-2779,





- 571 https://doi.org/10.1016/j.atmosenv.2006.11.041, 2007.
- 572 Wahner, A., Mental, T. F., Sohn, M., and Stier, J.: Heterogenous reaction of N<sub>2</sub>O<sub>5</sub> on
- 573 sodium nitrate aerosol. J. Geophys. Res. Atmos., 103, 31103-31112,
- 574 https://doi.org/10.1029/1998JD100022, 1998.
- 575 Wang, G., Wang, H., Yu, Y., Gao, S., Feng, J., Gao, S., & Wang, L.: Chemical
- 576 characterization of water-soluble components of PM<sub>10</sub> and PM<sub>2.5</sub> atmospheric
- aerosols in five locations of Nanjing, China. *Atmos. Environ.*, **37**., 2893-2902.
- 578 https://doi.org/10.1016/j.atmosenv.S1352-2310(03)00271-1, 2003.
- 579 Wang, G., Zhang, R., Geomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y., Peng,
- 580 J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., An, Z.,
- 581 Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng,
- 582 J., Shang, D., Zheng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li,
- 583 Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S.,
- 584 Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from
- 585 London fog to Chinese haze. Proc. Natl. Acad. Sci., 113, 13630-13635,
- 586 https://doi.org/ 10.1073/pnas.1616540113, 2016.
- 587 Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D.,
- 588 Tang, Z., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zheng, L., Zhu, T., Hu, M., and
- 589 Zhang, Y.: High N<sub>2</sub>O<sub>5</sub> concentrations observed in urban Beijing: implications of a
- 590 large nitrate formation. *Environ. Sci. Technol. Lett.*, 4, 416-420,
- 591 https://doi.org/10.1021/acsestlett.7b00341, 2017.
- 592 Wang, H., Zhu, B., Shen, L., Xu, H., An, J., Xue, G., and Cao, J.: Water soluble ions
- 593 in atmospheric aerosols measured in five sites in the Yantze River Delta, China:
- 594 size-fractionated seasonal variation and sources. *Atmos. Environ.*, **123**(B), 370-
- 595 379, https://doi.org/10.1016/j.atmosenv.2015.05.070, 2015.
- 596 Wang, W., Yu, J., Cui. Y., He, J., Xue, P., Cao, W., Ying, H., Gao, W., YIng, Y., Gao,





- 597 W., Yan, Y., Hu, B., Xin, J., Wang, L., Liu, Z., Sun, Y., Ji, D., and Wang, Y.:
- 598 Characteristics of fine particulate matter and its sources in an industrialized
- 599 coastal city, Ningbo, Yantze River Delta, China. *Atmos. Res.*, **203**, 105-117,
- 600 https://doi.org/10.1016/j.atmosres.2017.11.033, 2018.
- 601 Wang, Y., Zhuang, G., Zhang, X., Xu, C., Tang, A., Chen, J., and An, Z.: The ion
- 602 chemistry, seasonal cycle, and sources of PM<sub>2.5</sub> and TSP aerosol in Shanghai.
- 603 *Atmos. Environ.*, **40**(16), 2935-2952,
- 604 https://doi.org/10.1016/j.atmosenv.2005.12.051, 2006.
- 605 Wei, L., Yue, S., Zhao, W., Yang, W., Zhang, Y., Ren, L., Han, X., Guo, Q., Sun, Y.,
- 606 Wang, Z., and Fu, P.: Stable sulfur isotope ratios and chemical compositions of
- fine aerosols (PM<sub>2.5</sub>) in Beijing, China. *Sci. Total Environ.*, **633**, 1156-1164,
- 608 https://doi.org/10.1016/j.scitotenv.2018.03.153, 2018.
- 609 Wen, L., Chen, J., Yang, L., Wang, X., Xu, C., Sui, X., Yao, L., Zhu, Y., Zhang, J.,
- 610 Zhu, T., and Wang, W.: Enhanced formation of particulate nitrate at a rural site on
- 611 the North China Plain in summer: the importance roles of ammonia and ozone.
- 612 *Atmos. Environ.*, **101**, 294-302, doi:10.1016/j.atmosenv.2014.11.037, 2015.
- 613 Yang, H., Yu, J. Z., Ho, S. S. H., Xu, J., Wu, W.-S., Wan, C. H., Wang, X., Wang, X.,
- and Wang, L.: The chemical composition of inorganic and carbonaceous
- 615 materials in PM<sub>2.5</sub> in Nanjing, China. *Atmos. Environ.*, **39**, 3735-3749,
- 616 https://doi.org/10.1016/j.atmosenv.2005.03.010, 2005.
- 617 Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B.:
- 618 The water-soluble ionic composition PM<sub>2.5</sub> in Shanghai and Beijing, China.
- 619 *Atmos. Environ.*, **36**, 4223-4234, https://doi.org/10.1016/j.atmosenv.2005.12.051,
- **620** 2002.
- 621 Ye, X. N., Ma, Z., Zhang, J. C., Du, H. H., Chen, J. M., Chen, H., Yang, X., Gao, W.,
- and Geng, F. H.: Important role of ammonia on haze formation in Shanghai.





- 623 Environ. Res. Lett., 6, 024019, https://doi.org/10.1088/1748-9326/6/2024019,
- **624** 2011.
- 625 Ye, Z., Liu, J., Gu, A., Feng, F., Liu, Y., Bi, C., Xu, J., Li, L., Chen, H., Chen, Y., Dai,
- 626 L., Zhou, Q., and Ge, X.: Chemical characterization of fine particulate matter in
- 627 Changzhou, China and source apportionment with offline aerosol mass
- 628 spectrometry. Atmos. Chem. .Phys., 17, 2573-2592, https://doi.org/10.5194/acp-
- 629 17-2573-2017, 2017.
- 630 Zhang, Y.-L., and Cao, F.: Fine particulate matters (PM<sub>2.5</sub>) in China at a city level. Sci.
- 631 *Rep.*, **5**, 14884, https://doi.org/10.1038/srep14884, 2015.
- 632 Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and
- 633 Liu, H. Y.: Characteristics of concentrations and chemical compositions for
- 634 PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys.,
- 635 **13**, 4631-4644, https://doi.org/10.5194/acp-13-4631-2013, 2013.
- 636 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi,
- 637 J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in
- 638 China's anthropogenic emissions since 2010 as the consequence of clean air
- 639 actions. Atmos. Chem. .Phys., 18(19), 14095-14111, https://doi.org/10.5194/acp-
- **640** 18-14095-2018, 2018.
- 641 Zou, J., Liu, Z., Hu, B., Huang, X., Wen, T., Ji, D., Liu, J., Yang, Y., Yao, and Wang,
- 642 Y.: Aerosol chemical compositions in the Northern China Plain and the impact on
- visibility in Beijing and Tianjin., *Atmos. Res.*, **201**, 235-246,
- 644 https://doi.org/10.1016/j.atmosres.2017.09.014, 2018.
- 645





| 646 | Table Captions                                                                                                  |  |
|-----|-----------------------------------------------------------------------------------------------------------------|--|
| 647 | Table 1 The regression models between NO $_3^{-}/SO_4^{2-}$ (Y) and NH $_4^+/SO_4^{2-}$ (X) along               |  |
| 648 | with the criterion values of $NH_4^+/SO_4^{2-}$ in ammonium-rich regime during the                              |  |
| 649 | sampling periods.                                                                                               |  |
| 650 |                                                                                                                 |  |
| 651 | Figure Captions                                                                                                 |  |
| 652 | Figure 1 Relative locations of the sampling site. In this figure, the sampling site                             |  |
| 653 | (Nanjing) by the red dot. The contour denotes $PM_{2.5}$ emission data (kg km <sup>-1</sup>                     |  |
| 654 | month <sup>-1</sup> which is obtained from Huang et al. (2014b).                                                |  |
| 655 | Figure 2 Time series of concentrations in (a) $PM_{2.5}$ mass, (b) SIA species, (c) ALWC                        |  |
| 656 | and (d) Ox along with (e) Fn observed in Nanjing during the sampling                                            |  |
| 657 | periods.                                                                                                        |  |
| 658 | Figure 3 Abundance of each species in TWSIIs during the (a) entire, (b) haze (PM <sub>2.5</sub> $\geq$          |  |
| 659 | 150 $\mu g~m^{\text{-}3}$ ) and (c) clear (PM_{2.5} $\leq$ 35 $\mu g~m^{\text{-}3})$ events. The numbers in the |  |
| 660 | 50 parentheses are standard deviations.                                                                         |  |
| 661 | Figure 4 Diurnal variations of the concentrations of $NO_3^-$ , $SO_4^{2-}$ and $NH_4^+$ , excess-              |  |
| 662 | $\mathrm{NH_4^+},$ Ox and ALWC, and nitrogen conversion ratio (Fn) as well as ambient                           |  |
| 663 | relative humidity in Nanjing during the sampling periods. For $SO_4^{2-}$ , $NO_3^{}$                           |  |
| 664 | and $\mathrm{NH_4^+}$ , the mean values (dots) and standard deviations (solid lines) are                        |  |
| 665 | plotted.                                                                                                        |  |
| 666 | Figure 5 Scatter plots of molar ratios of $NO_3^{-}/SO_4^{2-}$ against $NH_4^{+}/SO_4^{2-}$ in Nanjing          |  |
| 667 | during the different seasons.                                                                                   |  |
| 668 | Figure 6 Scatter plot of NO3 <sup>-</sup> vs. excess-NH4 <sup>+</sup> molar concentrations in Nanjing during    |  |
| 669 | the different seasons. The results in Beijing, Shanghai, Guangzhou, Lanzhou                                     |  |
| 670 | and Hong Kong are also shown in this figure.                                                                    |  |





| 671 | Figure 7 Scatter plots of (a) Fn against Ox and (b) Fn against ALWC during the high                     |  |  |
|-----|---------------------------------------------------------------------------------------------------------|--|--|
| 672 | hourly PM_{2.5} concentration conditions (hourly PM_{2.5} $\geq$ 150 $\mu g~m^{\text{-3}}$ ).           |  |  |
| 673 | Figure 8 Time series of concentrations in (a) $PM_{2.5}$ mass, (b) SIA species ( $NO_3^-$ , $SO_4^{2-}$ |  |  |
| 674 | and $NH_4^+$ ), (c) ALWC, Ox and $NO_2$ and (d) RH and T in Nanjing City from                           |  |  |
| 675 | March 3 to 6, 2016. The grey shadows denote $PM_{2.5}$ episodes. The red                                |  |  |
| 676 | numbers represent $NO_3^-$ formation rate during the $PM_{2.5}$ episodes.                               |  |  |
| 677 | Figure 9 The isopleth of concentration in $NH_4NO_3$ aerosols ( $\mu g m^{-3}$ ) versus $NH_3$ and      |  |  |
| 678 | HNO <sub>3</sub> concentrations (units in ppb). The NH <sub>4</sub> NO <sub>3</sub> concentrations were |  |  |
| 679 | calculated using Eq. 2 in the text. The dots denote the observed data.                                  |  |  |
| 680 |                                                                                                         |  |  |





Table 1 The regression models between  $NO_3^{-7}SO_4^{2-}$  (Y) and  $NH_4^{+7}SO_4^{2-}$  (X) along with the criterion values of  $NH_4^{+7}SO_4^{2-}$  in ammonium-rich regime during the

| sampling p       | eriods.                         |                                                         |
|------------------|---------------------------------|---------------------------------------------------------|
| Sampling periods | Regression models               | Criterion values of NH4 <sup>+</sup> /SO4 <sup>2-</sup> |
| 2016 spring      | $Y = 0.71 X - 1.27; R^2 = 0.87$ | 1.8                                                     |
| 2016 summer      | $Y = 0.67 X - 1.22; R^2 = 0.86$ | 1.8                                                     |
| 2017 winter      | $Y = 0.81 X - 1.50; R^2 = 0.91$ | 1.9                                                     |
| 2017 spring      | $Y = 0.95 X - 1.91; R^2 = 0.94$ | 2.0                                                     |
| 2017 summer      | $Y = 0.79 X - 1.32; R^2 = 0.84$ | 1.7                                                     |

28





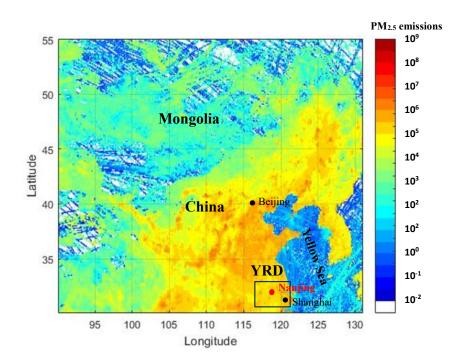
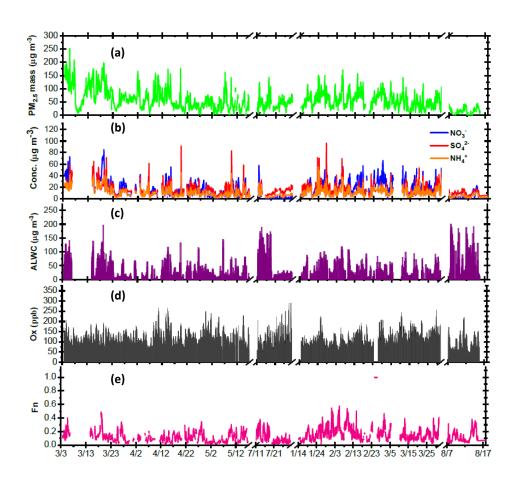



Figure 1 Relative locations of the sampling site. In this figure, the sampling site (Nanjing) by the red dot. The contour denotes PM<sub>2.5</sub> emission data (kg km<sup>-1</sup> month<sup>-1</sup> which is obtained from Huang et al. (2014b).







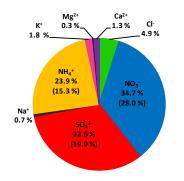
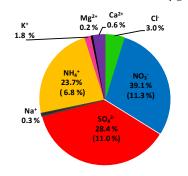



Figure 2 Time series of concentrations in (a) PM<sub>2.5</sub> mass, (b) SIA species, (c) ALWC and (d) Ox along with (e) Fn observed in Nanjing during the sampling periods.








## (a) Entire days: $PM_{2.5} = 58 \pm 35 \ \mu g \ m^{-3}$

(b) Haze events:  $PM_{2.5} = 171 \pm 18 \ \mu g \ m^{-3}$ 



(c) Clear events:  $PM_{2.5} = 22 \pm 9 \ \mu g \ m^{-3}$ 



Figurer 3 Abundance of each species in TWSIIs during the (a) entire, (b) haze (PM<sub>2.5</sub>  $\geq 150 \ \mu g \ m^{-3}$ ) and (c) clear (PM<sub>2.5</sub> < 35  $\ \mu g \ m^{-3}$ ) events. The numbers in the parentheses are standard deviations.





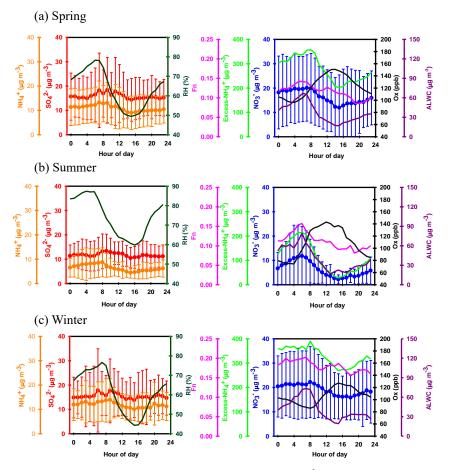



Figure 4 Diurnal variations of the concentrations of NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup>, excess-NH<sub>4</sub><sup>+</sup>, Ox and ALWC, and nitrogen conversion ratio (Fn) as well as ambient relative humidity in Nanjing during the sampling periods. For SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup>, the mean values (dots) and standard deviations (solid lines) are plotted.





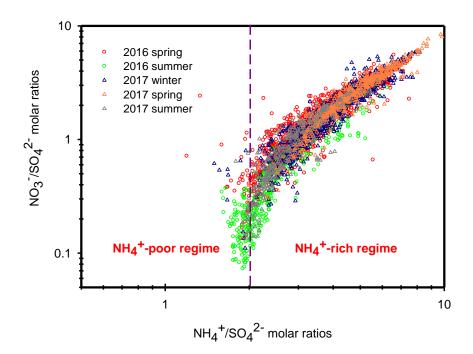



Figure 5 Scatter plots of molar ratios of  $NO_3^{-}/SO_4^{2-}$  against  $NH_4^{+}/SO_4^{2-}$  in Nanjing during the different seasons.







Figure 6 Scatter plot of NO<sub>3</sub><sup>-</sup> vs. excess-NH<sub>4</sub><sup>+</sup> molar concentrations in Nanjing during the different seasons. The results in Beijing, Shanghai, Guangzhou, Lanzhou and Hong Kong are also shown in this figure.





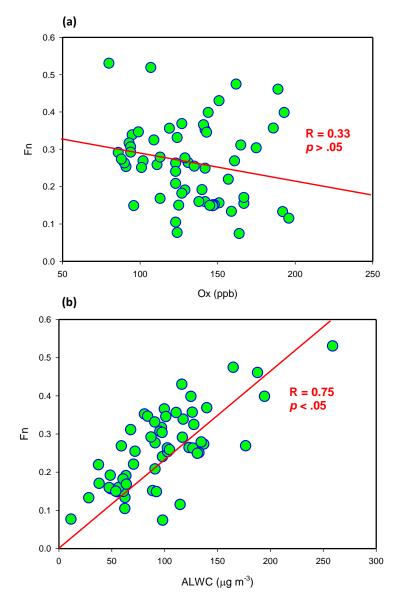



Figure 7 Scatter plots of (a) Fn against Ox and (b) Fn against ALWC during the high

hourly  $PM_{2.5}$  concentration conditions (hourly  $PM_{2.5}~\geq~150~\mu g~m^{\text{--}3}).$ 





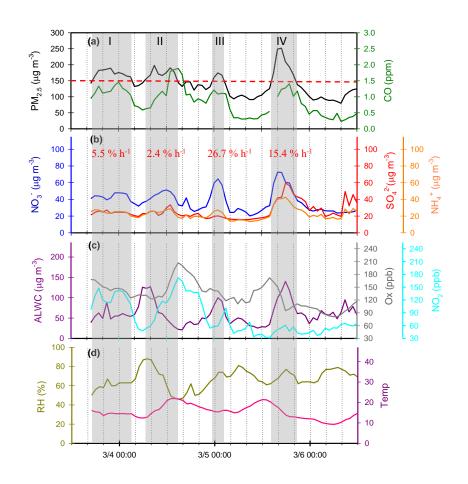



Figure 8 Time series of concentrations in (a) PM<sub>2.5</sub> mass and CO, (b) SIA species (NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup>), (c) ALWC, Ox and NO<sub>2</sub> and (d) RH and T in Nanjing City from March 3 to 6, 2016. The grey shadows denote PM<sub>2.5</sub> episodes. The red numbers represent NO<sub>3</sub><sup>-</sup> formation rate during the PM<sub>2.5</sub> episodes.





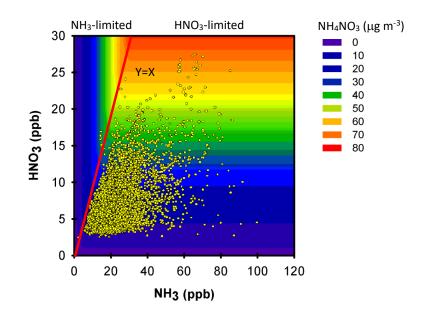



Figure 9 The isopleth of concentration in  $NH_4NO_3$  aerosols (µg m<sup>-3</sup>) versus  $NH_3$ and  $HNO_3$  concentrations (units in ppb). The  $NH_4NO_3$  concentrations were calculated using Eq. 2 in the text. The dots denote the observed data.